
3/23/2005

Software Engineering
Research Infusion

Tom Pressburger, Research Infusion Lead (ARC)
Ben Di Vito (LaRC), Martin Feather (JPL),
Michael Hinchey (GSFC), Lawrence Markosian (ARC),
Luis Trevino (MSFC)

2 of 5403/23/2005

Outline

Background

Selected software engineering technologies

3 of 5403/23/2005

Background

NASA Software Engineering Initiative
Led by the Office of the Chief Engineer
Improve software engineering to meet the challenges of NASA

Some of the areas of activity
Improving software development process
Establishing Metrics collection and analysis
Training the workforce

Improving NASA Procedures, Procedural Requirements, Standards,
Directives,…
and….

4 of 5403/23/2005

Infusing Software Engineering Research

Goal: Transfer into practice
NASA-sponsored Software Engineering Research
Other new software engineering tools and technologies

Approach
Present selected technologies to the
NASA software development community,
and

Encourage and support collaborations
between the technology providers and
NASA software developers.

5 of 5403/23/2005

Collaborations
Initiated by a software developer who wants to
bring on board one or more of the technologies
Purpose

benefit the software development project
validate the research

Not: further develop the research

Funding available for—
training and consulting in the use of the technology

license fees in the case of commercial technologies

managing & applying the technology

collecting & analyzing data

reporting results.

6 of 5403/23/2005

Funding for Collaborations

Funding for several small collaborations available from OSMA via
the Software Assurance Research Program (SARP).

History: 10 projects in the range $15K - $45K: 6 in 2004, 4 in 2005
Competition for SARP funds is among the NASA Centers and JPL.
Proposals must come from a civil servant or JPL employee referred
to as Government Point Of Contact (POC)
The Principal Investigator (PI) represents the organization which
actually wants to use the new technology. PI can be a contractor who
has a contractual vehicle in place with NASA.
Often the POC is the COTR or technical manager on the PI’s contract
Money is sent to the POC to put on contract
Either the PI or the POC can pay the technology provider.
Proposal template and instructions on the Research Infusion website.
Due: Friday, May 27, 2005, 9 AM PST.
Start: February 2006.

We will help facilitate unfunded collaborations.

7 of 5403/23/2005

Software Engineering Research Infusion Sites and
Applications

JSC,USA

MSFC

GSFC

JPL

ARC IVVF

Technologies and Infusion sites: Applications:

C code analysis (ARC, MSFC, IVVF) ISS payload, Shuttle

Formal inspection technique (GSFC, USA) Spacecraft FSW, ISS

Defect classification (JPL) Ground system

Requirements analysis tool (ARC) ISS payload

UML checking (GSFC) Spacecraft instrument module

8 of 5403/23/2005

Success of 2004 Infusion Collaborations
Technologies applied in 2004 Collaborations:

Source code analyzers

Formal inspection technique

Defect classification technique for process improvement

Applications
Station and shuttle code, flight software, ground software

Technologies were successfully applied
Found defects that had escaped testing and previous inspections

Suggested maintenance direction

Technologies were well received and most will continue to
be used.

We are offering some of the same as well as new
technologies for collaborations in 2006.

9 of 5403/23/2005

Training in Modern Formal Inspections

Have proven effective time and again.
Perspective-based approach improves efficiency;
successfully applied in 2004 at GSFC and USA.
Course developed in conjunction with Fraunhofer
Institute; Dr. Forrest Shull instructor.
1.5 days, some pre and post work. Tailored towards your
application!
With enough interest, NASA Engineering Training (NET)
will offer the course this year.
If interested, email

Darrell.J.Thomas@nasa.gov, lead Training Subgroup of SWG.

10 of 5403/23/2005

Selected Technologies
Culled from

NASA-sponsored software engineering
research
Leading edge commercial tools

Research in DoD, institutes and industry
suggested by NASA projects.

Reviewed by researchers at several
centers experienced in tech transfer
of software engineering research.
Send us suggestions for next time.

SE development problem areas

SE technologies

11 of 5403/23/2005

Selected Technologies (continued)

Technology Selection Criteria
Has been successfully applied, often in a NASA context.
Easily adopted.

Focus on Software Assurance.

12 of 5403/23/2005

Collaboration Roles

Technology provider
During proposal preparation: help plan collaboration, including
help select suitable application
1 – 3 day training course at your site

Online tutorial and other user documentation

Customer support throughout collaboration

For Technology Provider and Software Development Team

13 of 5403/23/2005

Collaboration Roles (continued)

Development team
During proposal preparation:

Contact Research Infusion team, let us know you plan to submit
proposal.
We will review concept and give feedback on proposal drafts!

Work with technology provider to plan collaboration and select
suitable application.
Write and submit the proposal.

Take training course.

Identify software artifacts to which the technology will be applied.

Apply the technology, sometimes in multiple iterations.
Collect data & evaluate performance; write final report.

14 of 5403/23/2005

Next Step

If you’re interested in a collaboration involving one of the
selected technologies, follow the proposal process at
http://ic.arc.nasa.gov/researchinfusion/

We want to provide feedback on proposals before the
due date.

3/23/2005

Selected Technologies

Lawrence Markosian

16 of 5403/23/2005

Selected Software Engineering
Research Technologies

1. Requirements Specification and Analysis

2. Matlab Testing Tools

3. Software Architecture Evaluation

4. Source Code Analysis & Error Detection

5. Linux-based RTOS

6. Software Reliability Estimation

7. Software Process Improvement

17 of 5403/23/2005

Choosing the Right Technology

In most cases, a good choice within a group
of technologies will be apparent

Your application

Technology capabilities & limitations

Resources on our web site:
1-page overview

3-page technology description

Link to technology web site & other materials

Talk with us to obtain a better sense of the “match”

Narrow your choices and contact the technology
vendors!

18 of 5403/23/2005

Technology Description Format

Technology name, vendor, contact point,
and NASA funding program if any

What is it

Features

Benefits

Successes

Contexts for best use

19 of 5403/23/2005

1. Requirements Specification and
Analysis

SpecTRM
State-machine based requirements specification environment
with particular emphasis on mission-critical and safety-critical
systems

20 of 5403/23/2005

SpecTRM (Specification Tools and Requirements Methodology)
PoC: Grady Lee, Safeware Engineering
sales@safeware-eng.com, (206) 328-4880
NASA Funding for underlying research

What is it
Environment for creating & analyzing state-machine based
requirements models, with particular emphasis on mission-
critical and safety-critical systems.

Features
Emphasis on construction of software requirements models that
can be easily read, reviewed, simulated visually, traced and
analyzed

Direct support for capturing “intent specifications” to document
rationale—not only what and how but also why.

Tool support for completeness in hazard analysis

21 of 5403/23/2005

SpecTRM (continued)

Benefits
Find consistency/completeness errors at the requirements level, where
resolving errors is least costly and most effective
Easily-learned notation enables use by domain experts
Assist in satisfying new NASA safety standard.

Successes
Derived from Prof. Nancy Leveson’s work on TCAS II with NASA and
FAA support
Adopted and used by Japan Manned Space Systems Corporation
SpecTRM-based services provided to automotive, aerospace and
medical devices industry by Safeware

Contexts for best use
Software-intensive, mission-critical and safety-critical systems.
Software with complex decision-making algorithms, such as mode and
state transition logic, benefit more than systems where complexity is in
numerical calculations.

22 of 5403/23/2005

2. MATLAB Model Testing Tools

MATT
Automated black-box test case generation, execution, and
management for Matlab/Simulink models and generated code

Reactis
Automated white-box test case generation and validation of
Simulink and Stateflow models

ANCT
Automated black-box test case generation, execution, reliability
& stability analysis, and validation of Matlab/Simulink models of
controllers

23 of 5403/23/2005

MATT
PoC: Joel Henry, University of Montana joel.henry@mso.umt.edu
406-243-2218 . Funding source: NASA OSMA/SARP

What is it: Tools for –
Automated black-box test case generation, execution, and
management for Matlab/Simulink models and generated code

Features
select the entire Simulink model, or any subsystem for testing;

generate the input values for each inport for each time step using
built-in functions, user specified functions, and graphical tools;

specify defect criteria for each outport or combination of outports;

execute tests using simulation or test the automatically generated
code;
detect defects based on outport defect criteria; and

analyze multiple test runs for coverage, model reliability

24 of 5403/23/2005

MATT (continued)

Benefits
Quickly configure and execute tests on entire Matlab/Simulink
models or any subsystem.
Re-use tests when the models change and source code is
regenerated.
Detect and evaluate defects quickly.

Successes
Used by SAIC on the STEREO (Solar-Terrestrial Relations
Observatory) project (GSFC).

Context for best use
Development environment where model developers use MATT
consistently.
NASA IVV Facility evaluation report specifically recommends it
for unit testing.

25 of 5403/23/2005

Reactis
PoC: Steve Sims, CTO, Reactive Systems
sims@reactive-systems.com 703-534-6458

What is it
Tools to automate white-box test case generation and validation of
Simulink and Stateflow models.

Features
User can specify structural-coverage criteria (such as branch and
MCDC, as required by FAA DO-178B) in selecting test data
Generates test data automatically from models to achieve specified
coverage.
Instruments models, collects model coverage metrics

Benefits
Construct better models more quickly through requirements checking
and debugging, and better code through coverage testing.

Successes
Reported 25 – 75% reduction in testing costs in automotive industry.

26 of 5403/23/2005

ANCT
PoC: Fola Soares, Contek Research, Inc. at NASA DFRC
fola.soares@dfrc.nasa.gov 667-276-5536

What is it
Tools to automate black-box test case generation, reliability & stability
analysis, and validation of Matlab/Simulink models of controllers.

Features
Monte Carlo model simulation and analysis capability
Evaluates the time-series outputs using user-specified output evaluation
functions
Manage test results in MySQL DB and MAT-file format.
Support for finding inputs and parameter values that optimize user-
specified evaluation function (genetic algorithm techniques)

Benefits
Simplifies analysis of control systems over entire operating envelope
and under specified fault conditions.

Successes
Intelligent Flight Control Systems F-15 and C-17 Projects adaptive
neural flight control systems at NASA DFRC

27 of 5403/23/2005

Comparison of 3 Matlab/Simulink tools

Black box

User-specified inputs –
functions, graphical
input, data files, etc.
MATT simulates the
model (or runs the
generated code)

Reliability analysis tool
analyzes multiple test
output files – failure
prob., MTTF, domain
coverage

White box
Automated
generation of test
cases to meet
coverage
conditions
including MCDC
Collects coverage
metrics

Black box

User-specified
inputs – functions
(m-files), built-ins,
etc.

Supports Monte
Carlo analysis
Finds input &
parameter values
that optimize
evaluation function

MATT Reactis ANCT

28 of 5403/23/2005

3. Software Architecture Evaluation

Software Architecture / Code Consistency Evaluation
Tools and Methodology for assuring that the code implements
the intended design

Usability and Architecture
Methodology for assuring that an architecture supports usability

29 of 5403/23/2005

Software Architecture / Code Consistency
Evaluation
PoC: Mikael Lindvall
mikli@fc-md.umd.edu 301-403-8972
Fraunhofer Center – Maryland

What is it
Tools and Methodology for assuring that the code implements the
intended design

Features
Tailorable to project needs, architectural styles, design patterns, general
guidelines and design rationale.

Benefits
Quickly check that source code conforms to planned architecture.
Identify architectural violations & prevent architecture from degenerating
during maintenance.

Assure that architecture remains flexible despite software evolution.
Make reviews more efficient by ensuring the architecture is accurate.

30 of 5403/23/2005

Software Architecture Evaluation (continued)

Successes
Applied to several research projects and one commercial
product.

Contexts for best use
Best for systems designed with maintainability, reuse, flexibility
or evolvability in mind.

Can be applied to Java and C/C++ projects.

Object-oriented systems based on design patterns, architectural
styles, etc. benefit the most.

Applications planned to have a long life benefit the most.

31 of 5403/23/2005

What is it?
Methodology for assuring that
an architecture supports usability

Features
27 usability scenarios:

e.g., cancellation, information
reuse, observing system state

Benefits of including scenario

Responsibilities of the software
to support the scenarios

Methods for evaluating applicability of the scenarios

Architecture patterns that support the scenarios

DispatcherGUI

PluginsPluginsPlug-ins Recorder

Save/Restore
Interface

Administrator

Network
Interface

Selector

Reuse
Repository

E-mail
Manager

User

Plug-in services,
e.g., View manager

Green =
new components

Purple = modified
components

Usability & Architecture
PoC: Bonnie John, CMU, bej@cs.cmu.edu (412) 268-7182
Funding: NASA Code R, Engineering for Complex Systems and
Communications, Information, and Computing Technology programs, High
Dependability Computing

32 of 5403/23/2005

Usability & Architecture (continued)

Benefits
Reduce risk that the software architecture of an interactive system has
to be changed due to usability concerns, or that
architecture decisions impair usability

“Yikes! You mean we CAN’T
CANCEL COMMANDS??!!”

Contexts for best use
Early in design process
Software with human-in-the-loop

Successes
Modification of MERBoard’s architecture,
based on a usability analysis.

Oh no!

33 of 5403/23/2005

4. Source Code Analysis & Error
Detection

Klocwork InSpect
Automated source code analysis tool for detecting logical code
problems, metric violations and architectural violations in C, C++
and Java.

CodeSurfer
Intelligent source code browser/analyzer for C/C++

Fluid
Tool for analyzing Java source code to detect potential race
conditions and, in some cases, assure their absence

34 of 5403/23/2005

Klocwork InSpect
PoC: Don Hewitt, Klocwork, Inc.
don.hewitt@klocwork.com 925-461-5347

What is it?
Automated source code analysis tool for detecting logical code
problems, metric violations and architectural violations in C and C++

Features
Detects 50 pre-defined defect classes
Customizable to include user-defined defect classes
Can be integrated into organization’s build & issue-reporting process

Relatively high accuracy (identifies real defects with relatively few false
alarms) compared to most other source code analysis tools

Benefits
Identification of defects early in the development lifecycle reduced
cost to fix
High accuracy less time spent on filtering false alarms

35 of 5403/23/2005

Klocwork InSpect (continued)

Successes
Positive evaluation by Gerard Holzmann at JPL on several
example applications including 400 K non-comment source code
flight application.
HP and other large software developers

Contexts for best use
Integrated into the development environment

Target applications should follow good programming practices
guidelines

36 of 5403/23/2005

CodeSurfer
PoC: Mark Zarins, GrammaTech, Inc.
mzarins@grammatech.com 408-688-1243

What is it: Intelligent C/C++ source code browser for—
Code Inspection

Debugging
Safety/Security auditing
Documentation

Reverse engineering

Features
Interactive, graphical reports

Trace data flow backward and forward
through code

Display what variables a pointer can point to
Highlight code that affects selected statement(s) and/or variable(s)

Change impact analysis, etc.

Based on program slicing and pointer analysis technologies
Commercially supported product

37 of 5403/23/2005

CodeSurfer (continued)

Benefits
CodeSurfer makes it easy to analyze and understand code.

Successes
NASA, Mitre, MIT, Thales, Network Associates

Successful 2004 Research Infusion collaboration at JSC:

“Our group analyzes many mission-critical software projects to reduce defects
and ensure that the software meets requirements.

We conducted a formal study… to see if CodeSurfer could improve our
software inspections. In parallel to our normal inspection process, an
independent team used CodeSurfer.

We found that CodeSurfer reduced inspection time by an average of 40%.

In addition, when using CodeSurfer the number of defects found increased by
an average 116%.”

38 of 5403/23/2005

CodeSurfer (continued)

Contexts for best use
Code inspection/reviews, and debugging
Need compilable C source code; build application with
CodeSurfer using one of the standard C/C++ compilers
provided.
Best applied on applications of up to 100K – 500K LOC.

39 of 5403/23/2005

Fluid
PoC: William Scherlis, CMU
scherlis@cs.cmu.edu (412) 268-8741
Funded by NASA High Dependability Computing Program

What is it
Tool for analyzing Java source code to detect potential race conditions and, in
most cases, assure their absence

Features
Can provide positive assurance of absence of race conditions
Uses Javadoc-style declarations of design intent as program annotations
Uses static analysis to assess consistency of the code and the models
expressed using the program annotations

Integrated into Eclipse open source development environment

Benefits
Provides static assurances for critical multi-threading properties that are
difficult to assess using traditional testing & inspection.
Reduces likelihood of introducing race conditions.

40 of 5403/23/2005

Fluid (continued)

Successes
Experimentally applied to wide variety of Java production systems
and components, including commercial applications, JPL
applications, Sun’s Electric, and NASA’s CTAS
Found faults that can trigger race conditions (not false alarms) in
nearly all larger systems, including widely used library code.

Context for best use
Most effective on Java systems that are organized into subsystems
(for example, a 350KLOC system decomposable into subsystems
sized 50KLOC or less).

Focus is on both lock-based concurrency and non-lock concurrency
(e.g., as used in GUIs and no-heap real-time threads).

For new or old development, users must be willing to provide the
required program annotations

41 of 5403/23/2005

5. Linux-based RTOS

RTLinuxPro
POSIX hard-real-time, Linux-based operating system

42 of 5403/23/2005

RTLinuxPro
PoC: Michael Cravens, FSMLabs, Inc.
mcravens@fsmlabs.com 972-693-7799

What is it
POSIX hard-real-time, Linux-based operating system

Features
POSIX 1003.13 threads API
Large number of built-in methods for real-time control applications
including safe methods for non-real-time processes under Linux
Memory-protected real time threads and frame scheduler

Library emulating VxWorks functions
Decoupled architecture for RT and non-RT software

Benefits
Decoupled architecture prevents non-RT software from interfering with
the operation of the RT system

Low-microsecond worst case real-time plus standard Linux
development and runtime environment
Potentially reduced cost compared with VxWorks

43 of 5403/23/2005

RTLinuxPro (continued)

Benefits (continued)
Leverages Open Source resources in a hard-real-time
environment

Successes
Development and test of P&W JSF F-134 Jet Engine used a
machine-in-the-loop simulator hosted on RTLinux

Used at Sandia Laboratories

ATOS-Origin has ported software for the ESA.

Experimental uses and evaluation of Linux-compatible real time
operating systems conducted at GRC funded by OSMA
Other industrial customers: BBN, Lucent, Harris

Context for best use
Where there is a need for the combination of a full UNIX system
and hard-real-time control.

44 of 5403/23/2005

6. Software Reliability Estimation

SMERFS^3
Software reliability analysis tool

CASRE
Software reliability analysis tool

45 of 5403/23/2005

SMERFS^3: Statistical Modeling and Estimation of Reliability
Functions for Systems
PoC: William Farr, Naval Surface Warfare Center Dahlgren Division
William.Farr@navy.mil 540-653-8388

What is it
Tool for determining a variety of reliability and availability
measures at either the component level (hardware or software)
or the system level of any software-intensive system.

Features
Uses observed failure data to fit reliability models to the data and
then use the models to estimate and predict reliability measures.
Models include 11 of the most-used in the literature
Measures include: remaining number of faults, mean time to
failure, operational reliability for a specified time, testing time
required to achieve desired level of quality, and system
availability.
Supports trade and sensitivity studies.

46 of 5403/23/2005

SMERFS^3 (continued)

Benefits: Helps determine –
testing resource allocation
when testing should stop

when the software component should be re-engineered

estimate of availability for systems.

Trade and sensitivity studies allow improved judgment of system
quality.

Successes
Earlier version of tool used by Lockheed Martin as reliability
check on flight control software before each Shuttle flight.

Analyzed reliability & availability of ground-based software
system and a satellite system at GSFC

Assessed quality of Navy’s TRIDENT Fire Control, AEGIS, and
components of TOMAHAWK software.

47 of 5403/23/2005

SMERFS^3 (continued)

Contexts for best use
Software-intensive systems where reliability is a critical factor
Need data on faults such as fault severity, testing intensity (e.g.,
number of test cases run), time/date of failure occurrence, time
to fix the fault (for estimating system availability).

Some level of statistical sophistication is required to interpret
SMERFS^3 results.

48 of 5403/23/2005

CASRE: Computer-Aided Software Reliability
Estimation Allen Nikora, JPL Allen.P.Nikora@jpl.nasa.gov 818.393.1104

What is it
Tool for estimating and forecasting software reliability based on
the failure history of a software system during test.
Similar capabilities as SMERFS^3

Successes
USAF Operational Test & Evaluation Center – funded
development and use on software systems developed for the Air
Force.
Sun Microsystems, HP Printer Division, Raytheon, Motorola
> 400 copies downloaded from Open Channel Foundation

Comparison with SMERFS^3
Same mathematical libraries as in SMERFS
Implements trend tests that help determine whether it is
appropriate to apply software reliability models
Can combine model results according to user-specified static or
dynamic weighting schemes to improve model accuracy.

49 of 5403/23/2005

7. Software Process Improvement

Orthogonal Defect Classification
Software defect classification system with defect data feedback
for process improvement

Formal Inspection Training Course
Cost-effective methodology, discussed earlier, for early detection
of software defects

50 of 5403/23/2005

Orthogonal Defect Classification
PoC: Robyn Lutz, JPL
Funding: Office of Safety and Mission Assurance, Software Assurance Research
Program; and National Science Foundation

What is it
Software defect classification system with defect data feedback
for process improvement
First developed ~1990 by IBM,now widely used in industry

Provides generalized format for defect logs
It “looks at the forest, not the trees” to
identify defect patterns of concern.

New-S/W fix
New-

Procedure Confusion-
Doc Confusion-

None

Ops

Test

Total

46

10

8

26

35

3 5

22

11

7

3 40

5

10

15

20

25

30

35

40

45

50

Requirements Classification

N
u

m
b

er

51 of 5403/23/2005

Orthogonal Defect Classification (continued)

Features
Language & platform independent
Produces customizable Excel graphs

Much NASA expertise

Benefits
Provides quantitative basis for process improvement

Establishes a baseline for patterns of software defects
Much less expensive than root-cause analysis

Provides guidance in allocating funds for post-launch
maintenance

Enables effective corporate memory

Useful to single project or to organization

52 of 5403/23/2005

Orthogonal Defect Classification (continued)

Successes
Analyzed ~800 testing problem reports from Mars Exploration
Rover

Identified mechanisms by which requirements changes occur
and are resolved during testing and operations.

2004 Research Infusion collaboration with JPL ground software
project

Adopted by companies such as IBM, Motorola, Telcordia, Cisco,
and Nortel

Contexts for best use
Teams that want to incorporate improved defect metrics into their
development or maintenance process.

53 of 5403/23/2005

Next Step

If you’re interested in a collaboration involving a Research
Infusion technology, check out the collaboration proposal
process at

http://ic.arc.nasa.gov/researchinfusion/

We will help broker matches of
technology and software
developers.

54 of 5403/23/2005

Software Engineering Research Infusion
Technologies for 2006 Collaborations

Requirements capture, modeling and testing: SpecTRM

Matlab Testing Tools MATT, Reactis, ANCT

Software architecture evaluation: Architecture/Code
Consistency Evaluation, Usability & Architecture

Source code analysis and error detection: Klocwork
InSpect, CodeSurfer, Fluid

Real time operating system: RTLinux Pro

Software Reliability Estimation: SMERFS^3, CASRE

Software Process Improvement: Orthogonal Defect
Classification

http://ic.arc.nasa.gov/researchinfusion

